Phytomelatonin: an unexpected molecule with amazing performances in plants

Author:

Arnao Marino B1ORCID,Cano Antonio1ORCID,Hernández-Ruiz Josefa1ORCID

Affiliation:

1. Department of Plant Biology (Plant Physiology), Faculty of Biology, University of Murcia , 30100-Murcia , Spain

Abstract

Abstract Phytomelatonin, a multifunctional molecule that has been found to be present in all plants examined to date, has an important role in plants as a modulatory agent (a biostimulator) that improves plant tolerance to both biotic and abiotic stress. We present a review of phytomelatonin that considers its roles in plant metabolism and in particular its interactions with plant hormone network. In the primary metabolism of plants, melatonin improves the rate and efficiency of photosynthesis, as well related factors such as stomatal conductance, intercellular CO2, and Rubisco activity. It has also been shown to down-regulate some senescence transcription factors. Melatonin up-regulates many enzyme transcripts related to carbohydrates (including sucrose and starch), amino acids, and lipid metabolism, optimizing N, P, and S uptake. With respect to the secondary metabolism, clear increases in polyphenol, glucosinolate, terpenoid, and alkaloid contents have been described in numerous melatonin-treated plants. Generally, the most important genes of these secondary biosynthesis pathways have been found to be up-regulated by melatonin. The great regulatory capacity of melatonin is a result of its control of the redox and plant hormone networks. Melatonin acts as a plant master regulator, up-/down-regulating different plant hormone levels and signalling, and is a key player in redox homeostasis. It has the capacity to counteract diverse critical situations such as pathogen infections and abiotic stresses, and provide plants with varying degrees of tolerance. We propose possible future applications of melatonin for crop improvement and post-harvest product preservation.

Funder

Ministerio de Ciencia e Innovacion

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3