From stress to responses: aluminium-induced signalling in the root apex

Author:

Wang Peng1,Wan Ning1,Horst Walter J2,Yang Zhong-Bao1ORCID

Affiliation:

1. The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University (Qingdao) , Qingdao 266237 , PR China

2. Institute of Plant Nutrition, Leibniz Universität Hannover , Herrenhaeuser Str. 2, D-30419 Hannover , Germany

Abstract

AbstractAluminium (Al) toxicity is one of the major constraints for crop growth and productivity in most of the acid soils worldwide. The primary lesion of Al toxicity is the rapid inhibition of root elongation. The root apex, especially the transition zone (TZ), has been identified as the major site of Al accumulation and injury. The signalling, in particular through phytohormones in the root apex TZ in response to Al stress, has been reported to play crucial roles in the regulation of Al-induced root growth inhibition. The binding of Al in the root apoplast is the initial event leading to inhibition of root elongation. Much progress has been made during recent years in understanding the molecular functions of cell wall modification and Al resistance-related genes in Al resistance or toxicity, and several signals including phytohormones, Ca2+, etc. have been reported to be involved in these processes. Here we summarize the recent advances in the understanding of Al-induced signalling and regulatory networks in the root apex involved in the regulation of Al-induced inhibition of root growth and Al toxicity/resistance. This knowledge provides novel insights into how Al-induced signals are recognized by root apical cells, transmitted from the apoplast to symplast, and finally initiate the defence system against Al. We conclude that the apoplast plays a decisive role in sensing and transmitting the Al-induced signals into the symplast, further stimulating a series of cellular responses (e.g. exudation of organic acid anions from roots) to adapt to the stress. We expect to stimulate new research by focusing on the signalling events in the root apex in response to Al stress, particularly taking into consideration the signal transduction between the meristem zone, TZ, and elongation zone and the apoplast and symplast.

Funder

National Natural Science Foundation of China

Shandong Provincial Key Research and Development Program

Shandong Provincial Natural Science Foundation Project

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3