Physiological and Transcriptomic Analyses Reveal Commonalities and Specificities in Wheat in Response to Aluminum and Manganese

Author:

Luo Daozhen1,Xian Chunnuan1,Zhang Wenjie1,Qin Ying1,Li Qing1,Usman Muhammad1,Sun Shiheng1,Xing Yongxiu1,Dong Dengfeng1ORCID

Affiliation:

1. Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning 530004, China

Abstract

Aluminum (Al) and manganese (Mn) toxicity are the top two constraints of crop production in acid soil. Crops have evolved common and specific mechanisms to tolerate the two stresses. In the present study, the responses (toxicity and tolerance) of near-isogenic wheat lines (ET8 and ES8) and their parents (Carazinho and Egret) to Al and Mn were compared by determining the physiological parameters and conducting transcriptome profiling of the roots. The results showed the following: (1) Carazinho and ET8 exhibited dual tolerance to Al and Mn compared to Egret and ES8, indicated by higher relative root elongation and SPAD. (2) After entering the roots, Al was mainly distributed in the roots and fixed in the cell wall, while Mn was mainly distributed in the cell sap and then transported to the leaves. Both Al and Mn stresses decreased the contents of Ca, Mg, and Zn; Mn stress also inhibited the accumulation of Fe, while Al showed an opposite effect. (3) A transcriptomic analysis identified 5581 differentially expressed genes (DEGs) under Al stress and 4165 DEGs under Mn stress. Among these, 2774 DEGs were regulated by both Al and Mn stresses, while 2280 and 1957 DEGs were exclusively regulated by Al stress and Mn stress, respectively. GO and KEGG analyses indicated that cell wall metabolism responds exclusively to Al, while nicotianamine synthesis exclusively responds to Mn. Pathways such as signaling, phenylpropanoid metabolism, and metal ion transport showed commonality and specificity to Al and Mn. Transcription factors (TFs), such as MYB, WRKY, and AP2 families, were also regulated by Al and Mn, and a weighted gene co-expression network analysis (WGCNA) identified PODP7, VATB2, and ABCC3 as the hub genes for Al tolerance and NAS for Mn tolerance. The identified genes and pathways can be used as targets for pyramiding genes and breeding multi-tolerant varieties.

Funder

National Natural Science Foundation of China

Guangxi Natural Science Foundation

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3