Hardware acceleration of genomics data analysis: challenges and opportunities

Author:

Robinson Tony1ORCID,Harkin Jim1ORCID,Shukla Priyank2ORCID

Affiliation:

1. School of Computing, Engineering and Intelligent Systems, Ulster University, Magee Campus, Derry/Londonderry, BT48 7JL, UK

2. Northern Ireland Centre for Stratified Medicine, Biomedical Sciences Research Institute, Ulster University, C-TRIC Building, Altnagelvin Area Hospital, Derry/Londonderry, BT47 6SB, UK

Abstract

Summary The significant decline in the cost of genome sequencing has dramatically changed the typical bioinformatics pipeline for analysing sequencing data. Where traditionally, the computational challenge of sequencing is now secondary to genomic data analysis. Short read alignment (SRA) is a ubiquitous process within every modern bioinformatics pipeline in the field of genomics and is often regarded as the principal computational bottleneck. Many hardware and software approaches have been provided to solve the challenge of acceleration. However, previous attempts to increase throughput using many-core processing strategies have enjoyed limited success, mainly due to a dependence on global memory for each computational block. The limited scalability and high energy costs of many-core SRA implementations pose a significant constraint in maintaining acceleration. The Networks-On-Chip (NoC) hardware interconnect mechanism has advanced the scalability of many-core computing systems and, more recently, has demonstrated potential in SRA implementations by integrating multiple computational blocks such as pre-alignment filtering and sequence alignment efficiently, while minimizing memory latency and global memory access. This article provides a state of the art review on current hardware acceleration strategies for genomic data analysis, and it establishes the challenges and opportunities of utilizing NoCs as a critical building block in next-generation sequencing (NGS) technologies for advancing the speed of analysis.

Funder

Department for the Economy

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. RISC-V for Genome Data Analysis: Opportunities and Challenges;2023 38th Conference on Design of Circuits and Integrated Systems (DCIS);2023-11-15

2. BioEdge: Accelerating Object Detection in Bioimages with Edge-Based Distributed Inference;Electronics;2023-11-05

3. The Need for Speed and Energy Efficiency in Genome Analysis;GEN Biotechnology;2023-06-01

4. Quantitative analysis of high‐throughput biological data;WIREs Computational Molecular Science;2023-02

5. Porting and Optimizing BWA-MEM2 Using the Fujitsu A64FX Processor;IEEE/ACM Transactions on Computational Biology and Bioinformatics;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3