Quantitative analysis of high‐throughput biological data

Author:

Juan Hsueh‐Fen12ORCID,Huang Hsuan‐Cheng3ORCID

Affiliation:

1. Department of Life Science, Institute of Biomedical Electronics and Bioinformatics, and Center for Systems Biology National Taiwan University Taipei Taiwan

2. Taiwan AI Labs Taipei Taiwan

3. Institute of Biomedical Informatics National Yang Ming Chiao Tung University Taipei Taiwan

Abstract

AbstractThe study of multiple “omes,” such as the genome, transcriptome, proteome, and metabolome has become widespread in biomedical research. High‐throughput techniques enable the rapid generation of high‐dimensional multiomics data. This multiomics approach provides a more complete perspective to study biological systems compared with traditional methods. However, the quantitative analysis and integration of distinct types of high‐dimensional omics data remain a challenge. Here, we provide an up‐to‐date and comprehensive review of the methods used for omics data quantification and integration. We first review the quantitative analysis of not only bulk but also single‐cell transcriptomics data, as well as proteomics data. Current methods for reducing batch effects and integrating heterogeneous high‐dimensional data are then introduced. Network analysis on large‐scale biomedical data can capture the global properties of drugs, targets, and disease relationships, thus enabling a better understanding of biological systems. Current trends in the applications and methods used to extend quantitative omics data analysis to biological networks are also discussed.This article is categorized under: Data Science > Artificial Intelligence/Machine Learning

Funder

Ministry of Science and Technology, Taiwan

Publisher

Wiley

Subject

Materials Chemistry,Computational Mathematics,Physical and Theoretical Chemistry,Computer Science Applications,Biochemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3