scTPC: a novel semisupervised deep clustering model for scRNA-seq data

Author:

Qiu Yushan1ORCID,Yang Lingfei1,Jiang Hao2ORCID,Zou Quan3ORCID

Affiliation:

1. School of Mathematical Sciences, Shenzhen University, Shenzhen, Guangdong 518000, China

2. School of Mathematics, Renmin University of China , Haidian District , Beijing 100872, China

3. Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China , Chengdu 610056, China

Abstract

Abstract Motivation Continuous advancements in single-cell RNA sequencing (scRNA-seq) technology have enabled researchers to further explore the study of cell heterogeneity, trajectory inference, identification of rare cell types, and neurology. Accurate scRNA-seq data clustering is crucial in single-cell sequencing data analysis. However, the high dimensionality, sparsity, and presence of “false” zero values in the data can pose challenges to clustering. Furthermore, current unsupervised clustering algorithms have not effectively leveraged prior biological knowledge, making cell clustering even more challenging. Results This study investigates a semisupervised clustering model called scTPC, which integrates the triplet constraint, pairwise constraint, and cross-entropy constraint based on deep learning. Specifically, the model begins by pretraining a denoising autoencoder based on a zero-inflated negative binomial distribution. Deep clustering is then performed in the learned latent feature space using triplet constraints and pairwise constraints generated from partial labeled cells. Finally, to address imbalanced cell-type datasets, a weighted cross-entropy loss is introduced to optimize the model. A series of experimental results on 10 real scRNA-seq datasets and five simulated datasets demonstrate that scTPC achieves accurate clustering with a well-designed framework. Availability and implementation scTPC is a Python-based algorithm, and the code is available from https://github.com/LF-Yang/Code or https://zenodo.org/records/10951780.

Funder

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3