Deep soft K-means clustering with self-training for single-cell RNA sequence data

Author:

Chen Liang1,Wang Weinan1,Zhai Yuyao2,Deng Minghua13

Affiliation:

1. School of Mathematical Sciences, Peking University, Beijing 100871, China

2. Mathematical and Statistical Institute, Northeast Normal University, Changchun 130024, China

3. Center for Quantitative Biology, Peking University, Beijing 100871, China

Abstract

Abstract Single-cell RNA sequencing (scRNA-seq) allows researchers to study cell heterogeneity at the cellular level. A crucial step in analyzing scRNA-seq data is to cluster cells into subpopulations to facilitate subsequent downstream analysis. However, frequent dropout events and increasing size of scRNA-seq data make clustering such high-dimensional, sparse and massive transcriptional expression profiles challenging. Although some existing deep learning-based clustering algorithms for single cells combine dimensionality reduction with clustering, they either ignore the distance and affinity constraints between similar cells or make some additional latent space assumptions like mixture Gaussian distribution, failing to learn cluster-friendly low-dimensional space. Therefore, in this paper, we combine the deep learning technique with the use of a denoising autoencoder to characterize scRNA-seq data while propose a soft self-training K-means algorithm to cluster the cell population in the learned latent space. The self-training procedure can effectively aggregate the similar cells and pursue more cluster-friendly latent space. Our method, called ‘scziDesk’, alternately performs data compression, data reconstruction and soft clustering iteratively, and the results exhibit excellent compatibility and robustness in both simulated and real data. Moreover, our proposed method has perfect scalability in line with cell size on large-scale datasets.

Funder

National Key Research and Development Program of China

National Key Basic Research Project of China

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

General Medicine

Cited by 68 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3