1DCAE-TSSAMC: Two-Stage Multi-Dimensional Spatial Features Based Multi-View Deep Clustering for Time Series Data

Author:

Chen Jianglong1,Song Weiwei1,Zuo Xiaoqing1,Zhao Kang2,Jin Baoxuan2,Zhu Daming1,Dai Bolan3

Affiliation:

1. Faculty of Land Resources Engineering, Kunming University of Science and Technology, KunMing 650500, P. R. China

2. Department of Natural Resources of Yunnan Province, Kunming 650224, P. R. China

3. 722 Research Institute of China Shipbuilding Corporation, Wuhan, Hubei, 430079, P. R. China

Abstract

At present, as a research hotspot for time series data (TSD), the deep clustering analysis of TSD has huge research value and practical significance. However, there still exist the following three problems: (1) For deep clustering based on joint optimization, the inevitably mutual interference existing between deep feature representation learning progress and clustering progress leads to difficult model training especially in the initial stage, the possible feature space distortion, inaccurate and weak feature representation; (2) Existing deep clustering methods are difficult to intuitively define the similarity of time series and rely heavily on complex feature extraction networks and clustering algorithms. (3) Multidimensional time series have the characteristics of high dimensions, complex relationships between dimensions, and variable data forms, thus generating a huge feature space. It is difficult for existing methods to select discriminative features, resulting in generally low accuracy of methods. Accordingly, to address the above three problems, we proposed a novel general two-stage multi-dimensional spatial features based multi-view deep clustering method 1DCAE-TSSAMC (One-dimensional deep convolutional auto-encoder based two-stage stepwise amplification multi-clustering). We conducted verification and analysis based on real-world important multi-scenario, and compared with many other benchmarks ranging from the most classic approaches such as K-means and Hierarchical to the state-of-the-art approaches based on deep learning such as Deep Temporal Clustering (DTC) and Temporal Clustering Network (TCN). Experimental results show that the new method outperforms the other benchmarks, and provides more accurate, richer, and more reliable analysis results, more importantly, with significant improvement in accuracy and spatial linear separability.

Funder

This work was sponsored in part by Key R&D Projects in Yunnan Province

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3