GOAT: Gene-level biomarker discovery from multi-Omics data using graph ATtention neural network for eosinophilic asthma subtype

Author:

Jeong Dabin1ORCID,Koo Bonil12ORCID,Oh Minsik3ORCID,Kim Tae-Bum4ORCID,Kim Sun1256ORCID

Affiliation:

1. Interdisciplinary Program in Bioinformatics, Seoul National University , Seoul 08826, Republic of Korea

2. AIGENDRUG Co., Ltd , Seoul 08826, Republic of Korea

3. School of Software Convergence, Myongji University , Seoul 03674, Republic of Korea

4. Department of Allergy and Clinical Immunology, Asan Medical Center, University of Ulsan College of Medicine , Seoul 05505, Republic of Korea

5. Department of Computer Science and Engineering, Seoul National University , Seoul 08826, Republic of Korea

6. Interdisciplinary Program in Artificial Intelligence,, Seoul National University , Seoul 08826, Republic of Korea

Abstract

Abstract Motivation Asthma is a heterogeneous disease where various subtypes are established and molecular biomarkers of the subtypes are yet to be discovered. Recent availability of multi-omics data paved a way to discover molecular biomarkers for the subtypes. However, multi-omics biomarker discovery is challenging because of the complex interplay between different omics layers. Results We propose a deep attention model named Gene-level biomarker discovery from multi-Omics data using graph ATtention neural network (GOAT) for identifying molecular biomarkers for eosinophilic asthma subtypes with multi-omics data. GOAT identifies genes that discriminate subtypes using a graph neural network by modeling complex interactions among genes as the attention mechanism in the deep learning model. In experiments with multi-omics profiles of the COREA (Cohort for Reality and Evolution of Adult Asthma in Korea) asthma cohort of 300 patients, GOAT outperforms existing models and suggests interpretable biological mechanisms underlying asthma subtypes. Importantly, GOAT identified genes that are distinct only in terms of relationship with other genes through attention. To better understand the role of biomarkers, we further investigated two transcription factors, CTNNB1 and JUN, captured by GOAT. We were successful in showing the role of the transcription factors in eosinophilic asthma pathophysiology in a network propagation and transcriptional network analysis, which were not distinct in terms of gene expression level differences. Availability and implementation Source code is available https://github.com/DabinJeong/Multi-omics_biomarker. The preprocessed data underlying this article is accessible in data folder of the github repository. Raw data are available in Multi-Omics Platform at http://203.252.206.90:5566/, and it can be accessible when requested.

Funder

National Research Foundation

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3