Advancing drug-response prediction using multi-modal and -omics machine learning integration (MOMLIN): a case study on breast cancer clinical data

Author:

Rashid Md Mamunur1ORCID,Selvarajoo Kumar123ORCID

Affiliation:

1. Biomolecular Sequence to Function Division, BII, (A*STAR) , Singapore 138671, Republic of Singapore

2. Synthetic Biology Translational Research Program, Yong Loo Lin School of Medicine, NUS , Singapore 117456, Republic of Singapore

3. School of Biological Sciences, Nanyang Technological University (NTU) , Singapore 639798, Republic of Singapore

Abstract

Abstract The inherent heterogeneity of cancer contributes to highly variable responses to any anticancer treatments. This underscores the need to first identify precise biomarkers through complex multi-omics datasets that are now available. Although much research has focused on this aspect, identifying biomarkers associated with distinct drug responders still remains a major challenge. Here, we develop MOMLIN, a multi-modal and -omics machine learning integration framework, to enhance drug-response prediction. MOMLIN jointly utilizes sparse correlation algorithms and class–specific feature selection algorithms, which identifies multi-modal and -omics–associated interpretable components. MOMLIN was applied to 147 patients’ breast cancer datasets (clinical, mutation, gene expression, tumor microenvironment cells and molecular pathways) to analyze drug-response class predictions for non-responders and variable responders. Notably, MOMLIN achieves an average AUC of 0.989, which is at least 10% greater when compared with current state-of-the-art (data integration analysis for biomarker discovery using latent components, multi-omics factor analysis, sparse canonical correlation analysis). Moreover, MOMLIN not only detects known individual biomarkers such as genes at mutation/expression level, most importantly, it correlates multi-modal and -omics network biomarkers for each response class. For example, an interaction between ER-negative-HMCN1-COL5A1 mutations-FBXO2-CSF3R expression-CD8 emerge as a multimodal biomarker for responders, potentially affecting antimicrobial peptides and FLT3 signaling pathways. In contrast, for resistance cases, a distinct combination of lymph node-TP53 mutation-PON3-ENSG00000261116 lncRNA expression-HLA-E-T-cell exclusions emerged as multimodal biomarkers, possibly impacting neurotransmitter release cycle pathway. MOMLIN, therefore, is expected advance precision medicine, such as to detect context–specific multi-omics network biomarkers and better predict drug-response classifications.

Funder

Bioinformatics Institute

Publisher

Oxford University Press (OUP)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3