Affiliation:
1. LinkedIn Corporation, Mountain View, California, USA
Abstract
Attention Model has now become an important concept in neural networks that has been researched within diverse application domains. This survey provides a structured and comprehensive overview of the developments in modeling attention. In particular, we propose a taxonomy that groups existing techniques into coherent categories. We review salient neural architectures in which attention has been incorporated and discuss applications in which modeling attention has shown a significant impact. We also describe how attention has been used to improve the interpretability of neural networks. Finally, we discuss some future research directions in attention. We hope this survey will provide a succinct introduction to attention models and guide practitioners while developing approaches for their applications.
Publisher
Association for Computing Machinery (ACM)
Subject
Artificial Intelligence,Theoretical Computer Science
Cited by
389 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献