Protein–ligand binding residue prediction enhancement through hybrid deep heterogeneous learning of sequence and structure data

Author:

Xia Chun-Qiu12,Pan Xiaoyong12ORCID,Shen Hong-Bin12ORCID

Affiliation:

1. Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University

2. Key Laboratory of System Control and Information Processing, Ministry of Education of China, 200240 Shanghai, China

Abstract

Abstract Motivation Knowledge of protein–ligand binding residues is important for understanding the functions of proteins and their interaction mechanisms. From experimentally solved protein structures, how to accurately identify its potential binding sites of a specific ligand on the protein is still a challenging problem. Compared with structure-alignment-based methods, machine learning algorithms provide an alternative flexible solution which is less dependent on annotated homogeneous protein structures. Several factors are important for an efficient protein–ligand prediction model, e.g. discriminative feature representation and effective learning architecture to deal with both the large-scale and severely imbalanced data. Results In this study, we propose a novel deep-learning-based method called DELIA for protein–ligand binding residue prediction. In DELIA, a hybrid deep neural network is designed to integrate 1D sequence-based features with 2D structure-based amino acid distance matrices. To overcome the problem of severe data imbalance between the binding and nonbinding residues, strategies of oversampling in mini-batch, random undersampling and stacking ensemble are designed to enhance the model. Experimental results on five benchmark datasets demonstrate the effectiveness of proposed DELIA pipeline. Availability and implementation The web server of DELIA is available at www.csbio.sjtu.edu.cn/bioinf/delia/. Supplementary information Supplementary data are available at Bioinformatics online.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Science and Technology Commission of Shanghai Municipality

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3