Efficient haplotype matching between a query and a panel for genealogical search

Author:

Naseri Ardalan1,Holzhauser Erwin1,Zhi Degui2,Zhang Shaojie1ORCID

Affiliation:

1. Department of Computer Science, University of Central Florida, Orlando, FL, USA

2. School of Biomedical Informatics and School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA

Abstract

Abstract Motivation With the wide availability of whole-genome genotype data, there is an increasing need for conducting genetic genealogical searches efficiently. Computationally, this task amounts to identifying shared DNA segments between a query individual and a very large panel containing millions of haplotypes. The celebrated Positional Burrows-Wheeler Transform (PBWT) data structure is a pre-computed index of the panel that enables constant time matching at each position between one haplotype and an arbitrarily large panel. However, the existing algorithm (Durbin’s Algorithm 5) can only identify set-maximal matches, the longest matches ending at any location in a panel, while in real genealogical search scenarios, multiple ‘good enough’ matches are desired. Results In this work, we developed two algorithmic extensions of Durbin’s Algorithm 5, that can find all L-long matches, matches longer than or equal to a given length L, between a query and a panel. In the first algorithm, PBWT-Query, we introduce ‘virtual insertion’ of the query into the PBWT matrix of the panel, and then scanning up and down for the PBWT match blocks with length greater than L. In our second algorithm, L-PBWT-Query, we further speed up PBWT-Query by introducing additional data structures that allow us to avoid iterating through blocks of incomplete matches. The efficiency of PBWT-Query and L-PBWT-Query is demonstrated using the simulated data and the UK Biobank data. Our results show that our proposed algorithms can detect related individuals for a given query efficiently in very large cohorts which enables a fast on-line query search. Availability and implementation genome.ucf.edu/pbwt-query Supplementary information Supplementary data are available at Bioinformatics online.

Funder

US National Institutes of Health

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3