Improving the Accuracy and Efficiency of Identity-by-Descent Detection in Population Data

Author:

Browning Brian L1,Browning Sharon R2

Affiliation:

1. Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, Washington 98195

2. Department of Biostatistics, University of Washington, Seattle, Washington 98195

Abstract

Abstract Segments of indentity-by-descent (IBD) detected from high-density genetic data are useful for many applications, including long-range phase determination, phasing family data, imputation, IBD mapping, and heritability analysis in founder populations. We present Refined IBD, a new method for IBD segment detection. Refined IBD achieves both computational efficiency and highly accurate IBD segment reporting by searching for IBD in two steps. The first step (identification) uses the GERMLINE algorithm to find shared haplotypes exceeding a length threshold. The second step (refinement) evaluates candidate segments with a probabilistic approach to assess the evidence for IBD. Like GERMLINE, Refined IBD allows for IBD reporting on a haplotype level, which facilitates determination of multi-individual IBD and allows for haplotype-based downstream analyses. To investigate the properties of Refined IBD, we simulate SNP data from a model with recent superexponential population growth that is designed to match United Kingdom data. The simulation results show that Refined IBD achieves a better power/accuracy profile than fastIBD or GERMLINE. We find that a single run of Refined IBD achieves greater power than 10 runs of fastIBD. We also apply Refined IBD to SNP data for samples from the United Kingdom and from Northern Finland and describe the IBD sharing in these data sets. Refined IBD is powerful, highly accurate, and easy to use and is implemented in Beagle version 4.

Publisher

Oxford University Press (OUP)

Subject

Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3