GNN-based embedding for clustering scRNA-seq data

Author:

Ciortan Madalina1,Defrance Matthieu1ORCID

Affiliation:

1. Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles, Brussels, Belgium

Abstract

Abstract Motivation Single-cell RNA sequencing (scRNA-seq) provides transcriptomic profiling for individual cells, allowing researchers to study the heterogeneity of tissues, recognize rare cell identities and discover new cellular subtypes. Clustering analysis is usually used to predict cell class assignments and infer cell identities. However, the high sparsity of scRNA-seq data, accentuated by dropout events generates challenges that have motivated the development of numerous dedicated clustering methods. Nevertheless, there is still no consensus on the best performing method. Results graph-sc is a new method leveraging a graph autoencoder network to create embeddings for scRNA-seq cell data. While this work analyzes the performance of clustering the embeddings with various clustering algorithms, other downstream tasks can also be performed. A broad experimental study has been performed on both simulated and scRNA-seq datasets. The results indicate that although there is no consistently best method across all the analyzed datasets, graph-sc compares favorably to competing techniques across all types of datasets. Furthermore, the proposed method is stable across consecutive runs, robust to input down-sampling, generally insensitive to changes in the network architecture or training parameters and more computationally efficient than other competing methods based on neural networks. Modeling the data as a graph provides increased flexibility to define custom features characterizing the genes, the cells and their interactions. Moreover, external data (e.g. gene network) can easily be integrated into the graph and used seamlessly under the same optimization task. Availability and implementation https://github.com/ciortanmadalina/graph-sc. Supplementary information Supplementary data are available at Bioinformatics online.

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

Reference35 articles.

1. Psychrophilic proteases dramatically reduce single-cell RNA-seq artifacts: a molecular atlas of kidney development;Adam;Development (Cambridge),2017

2. A dendrite method foe cluster analysis;Caliñski;Commun. Stat,1974

3. Comprehensive single-cell transcriptional profiling of a multicellular organism;Cao;Science,2017

4. Deep soft K-means clustering with self-training for single-cell RNA sequence data;Chen;NAR Genomics Bioinf,2020

5. Single-cell RNA-seq denoising using a deep count autoencoder;Eraslan;Nat. Commun,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3