Summarizing the solution space in tumor phylogeny inference by multiple consensus trees

Author:

Aguse Nuraini1,Qi Yuanyuan1,El-Kebir Mohammed1

Affiliation:

1. Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL, USA

Abstract

Abstract Motivation Cancer phylogenies are key to studying tumorigenesis and have clinical implications. Due to the heterogeneous nature of cancer and limitations in current sequencing technology, current cancer phylogeny inference methods identify a large solution space of plausible phylogenies. To facilitate further downstream analyses, methods that accurately summarize such a set T of cancer phylogenies are imperative. However, current summary methods are limited to a single consensus tree or graph and may miss important topological features that are present in different subsets of candidate trees. Results We introduce the Multiple Consensus Tree (MCT) problem to simultaneously cluster T and infer a consensus tree for each cluster. We show that MCT is NP-hard, and present an exact algorithm based on mixed integer linear programming (MILP). In addition, we introduce a heuristic algorithm that efficiently identifies high-quality consensus trees, recovering all optimal solutions identified by the MILP in simulated data at a fraction of the time. We demonstrate the applicability of our methods on both simulated and real data, showing that our approach selects the number of clusters depending on the complexity of the solution space T. Availability and implementation https://github.com/elkebir-group/MCT. Supplementary information Supplementary data are available at Bioinformatics online.

Funder

UIUC Center for Computational Biotechnology and Genomic Medicine

National Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

Reference36 articles.

1. PhyloWGS: reconstructing subclonal composition and evolution from whole-genome sequencing of tumors;Deshwar;Genome Biol,2015

2. Inferring tree models for oncogenesis from comparative genome hybridization data;Desper;JCB,1999

3. Clonality Inference from Single Tumor Samples Using Low Coverage Sequence Data

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3