Abstract
AbstractCancer phylogenies are key to understanding tumor evolution. There exists many important downstream analyses that takes as input a single or small number of trees. However, due to uncertainty, one typically infers many, equally-plausible phylogenies from bulk DNA sequencing data of tumors. We introduce Sapling, a heuristic method to solve the Backbone Tree Inference from Reads problem, which seeks a small set of backbone trees on a smaller subset of mutations that collectively summarize the entire solution space. Sapling also includes a greedy algorithm to solve the Backbone Tree Expansion from Reads problem, which aims to expand an inferred backbone tree into a full tree. We prove that both problems are NP-hard. On simulated and real data, we demonstrate that Sapling is capable of inferring high-quality backbone trees that adequately summarize the solution space and that can expanded into full trees.
Publisher
Cold Spring Harbor Laboratory