Weighted centroid trees: a general approach to summarize phylogenies in single-labeled tumor mutation tree inference

Author:

Vasei Hamed1,Foroughmand-Araabi Mohammad-Hadi1,Daneshgar Amir1

Affiliation:

1. Department of Mathematical Sciences, Sharif University of Technology , Tehran 111559415, Iran

Abstract

Abstract Motivation Tumor trees, which depict the evolutionary process of cancer, provide a backbone for discovering recurring evolutionary processes in cancer. While they are not the primary information extracted from genomic data, they are valuable for this purpose. One such extraction method involves summarizing multiple trees into a single representative tree, such as consensus trees or supertrees. Results We define the “weighted centroid tree problem” to find the centroid tree of a set of single-labeled rooted trees through the following steps: (i) mapping the given trees into the Euclidean space, (ii) computing the weighted centroid matrix of the mapped trees, and (iii) finding the nearest mapped tree (NMTP) to the centroid matrix. We show that this setup encompasses previously studied parent–child and ancestor–descendent metrics as well as the GraPhyC and TuELiP consensus tree algorithms. Moreover, we show that, while the NMTP problem is polynomial-time solvable for the adjacency embedding, it is NP-hard for ancestry and distance mappings. We introduce integer linear programs for NMTP in different setups where we also provide a new algorithm for the case of ancestry embedding called 2-AncL2, that uses a novel weighting scheme for ancestry signals. Our experimental results show that 2-AncL2 has a superior performance compared to available consensus tree algorithms. We also illustrate our setup’s application on providing representative trees for a large real breast cancer dataset, deducing that the cluster centroid trees summarize reliable evolutionary information about the original dataset. Availability and implementation https://github.com/vasei/WAncILP.

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3