Interpretable deep learning architectures for improving drug response prediction performance: myth or reality?
Author:
Affiliation:
1. Department of Electrical and Computer Engineering, McGill University , Montreal, QC, Canada
2. Mila, Quebec AI Institute , Montreal, QC, Canada
3. The Rosalind and Morris Goodman Cancer Institute , Montreal, QC, Canada
Abstract
Funder
Government of Canada’s New Frontiers in Research Fund
Natural Sciences and Engineering Research Council of Canada
Publisher
Oxford University Press (OUP)
Subject
Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability
Link
https://academic.oup.com/bioinformatics/advance-article-pdf/doi/10.1093/bioinformatics/btad390/50628666/btad390.pdf
Reference40 articles.
1. Machine learning approaches to drug response prediction: challenges and recent progress;Adam;NPJ Precis Oncol,2020
2. Opening the black box: interpretable machine learning for geneticists;Azodi;Trends Genet,2020
3. Artificial intelligence for drug response prediction in disease models;Ballester;Brief Bioinformatics,2022
4. Deep learning for drug response prediction in cancer;Baptista;Brief Bioinformatics,2021
5. Explainable artificial intelligence (XAI): concepts, taxonomies, opportunities and challenges toward responsible AI;Barredo Arrieta;Inform Fusion,2020
Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Trust me if you can: a survey on reliability and interpretability of machine learning approaches for drug sensitivity prediction in cancer;Briefings in Bioinformatics;2024-07-25
2. Machine Learning and Artificial Intelligence in Drug Repurposing—Challenges and Perspectives;Drug Repurposing;2024-07-03
3. Understanding the Sources of Performance in Deep Learning Drug Response Prediction Models;2024-06-06
4. Machine Learning and Artificial Intelligence in drug repurposing – challenges and perspectives;2024-05-27
5. A comprehensive benchmarking of machine learning algorithms and dimensionality reduction methods for drug sensitivity prediction;Briefings in Bioinformatics;2024-05-23
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3