Machine Learning and Artificial Intelligence in drug repurposing – challenges and perspectives

Author:

Anokian Ezequiel1ORCID,Bernett Judith2ORCID,Freeman Adrian3ORCID,List Markus2ORCID,Prieto Santamaría Lucía4ORCID,Tanoli Ziaurrehman5ORCID,Bonnin Sarah1ORCID

Affiliation:

1. Discovery and Translational Sciences (DTS), Clarivate Analytics, Barcelona (Spain)

2. Data Science in Systems Biology, School of Life Sciences, Technical University of Munich, Freising (Germany)

3. Discovery Sciences, Research and Early Development, BioPharmaceuticals R&D, AstraZeneca, Cambridge (UK)

4. Escuela Técnica Superior de Ingenieros Informáticos, Universidad Politécnica de Madrid (Spain), Centro de Tecnología Biomédica, Universidad Politécnica de Madrid (Spain)

5. Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki (Finland), BioICAWtech, Helsinki (Finland)

Abstract

Artificial Intelligence (AI) and Machine Learning (ML) techniques play an increasingly crucial role in the field of drug repurposing. As the number of computational tools grows, it is essential to not only understand and carefully select the method itself, but also consider the input data used for building predictive models. This review aims to take a dive into current computational methods that leverage AI and ML to drive and accelerate compound and drug target selection, in addition to addressing the existing challenges and providing perspectives. While there is no doubt that AI and ML-based tools are transforming traditional approaches, especially with recent advancements in graph-based methods, they present novel challenges that require the human eye and expert intervention. The growing complexity of OMICs data further emphasizes the importance of data standardization and quality.

Publisher

ScienceOpen

Reference55 articles.

1. 2018 FDA drug approvals;Mullard;Nature Reviews Drug Discovery,2019

2. A new method for computational drug repositioning using drug pairwise similarity;Li;2012 IEEE International Conference on Bioinformatics and Biomedicine,2012

3. A review of computational drug repurposing;Park;Translational and Clinical Pharmacology,2019

4. A review of spam email detection: analysis of spammer strategies and the dataset shift problem;Jáñez-Martino;Artificial Intelligence Review,2023

5. A Simple Representation of Three-Dimensional Molecular Structure;Axen;Journal of Medicinal Chemistry,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3