Hawk-Seq™ differentiates between various mutations in Salmonella typhimurium TA100 strain caused by exposure to Ames test-positive mutagens

Author:

Otsubo Yuki1,Matsumura Shoji1,Ikeda Naohiro1,Morita Osamu2

Affiliation:

1. R&D Safety Science Research, Kao Corporation, 3-25-14 Tono-machi, Kawasaki-ku, Kawasaki City, Kanagawa 210–0821, Japan

2. R&D Safety Science Research, Kao Corporation, 2606 Akabane, Ichikai-Machi, Haga-Gun, Tochigi 321–3497, Japan

Abstract

Abstract A precise understanding of differences in genomic mutations according to the mutagenic mechanisms detected in mutagenicity data is required to evaluate the carcinogenicity of environmental mutagens. Recently, we developed a highly accurate genome sequencing method, ‘Hawk-Seq™’, that enables the detection of mutagen-induced genome-wide mutations. However, its applicability to detect various mutagens and identify differences in mutational profiles is not well understood. Thus, we evaluated DNA samples from Salmonella typhimurium TA100 exposed to 11 mutagens, including alkylating agents, aldehydes, an aromatic nitro compound, epoxides, aromatic amines and polycyclic aromatic hydrocarbons (PAHs). We extensively analysed mutagen-induced mutational profiles and studied their association with the mechanisms of mutagens. Hawk-Seq™ sensitively detected mutations induced by all 11 mutagens, including one that increased the number of revertants by approximately 2-fold in the Ames test. Although the sensitivity for less water-soluble mutagens was relatively low, we increased the sensitivity to obtain high-resolution spectra by modifying the exposure protocol. Moreover, two epoxides indicated similar 6- or 96-dimensional mutational patterns; likewise, three SN1-type alkylating agents indicated similar mutational patterns, suggesting that the mutational patterns are compound category specific. Meanwhile, an SN2 type alkylating agent exhibited unique mutational patterns compared to those of the SN1 type alkylating agents. Although the mutational patterns induced by aldehydes, the aromatic nitro compound, aromatic amines and PAHs did not differ substantially from each other, the maximum total base substitution frequencies (MTSFs) were similar among mutagens in the same structural groups. Furthermore, the MTSF was found to be associated with the carcinogenic potency of some direct-acting mutagens. These results indicate that our method can generate high-resolution mutational profiles to identify characteristic features of each mutagen. The detailed mutational data obtained by Hawk-Seq™ can provide useful information regarding mutagenic mechanisms and help identify its association with the carcinogenicity of mutagens without requiring carcinogenicity data.

Funder

Kao Corporation

Publisher

Oxford University Press (OUP)

Subject

Health, Toxicology and Mutagenesis,Genetics (clinical),Toxicology,Genetics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3