Miniature Inverted-repeat Transposable Elements Drive Rapid MicroRNA Diversification in Angiosperms

Author:

Guo Zhonglong12ORCID,Kuang Zheng3,Tao Yihan1,Wang Haotian4ORCID,Wan Miaomiao1,Hao Chen1,Shen Fei5,Yang Xiaozeng5ORCID,Li Lei13ORCID

Affiliation:

1. State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and School of Life Sciences, Peking University , Beijing 100871 , China

2. Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University , Nanjing 210037 , China

3. Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University , Beijing 100871 , China

4. State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences , Kunming 650223 , China

5. Beijing Agro-biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences , Beijing 100097 , China

Abstract

Abstract MicroRNAs (miRNAs) are fast evolving endogenous small RNAs that regulate organism function and behavior in both animals and plants. Although models for de novo miRNA biogenesis have been proposed, the genomic mechanisms driving swift diversification of the miRNA repertoires in plants remain elusive. Here, by comprehensively analyzing 21 phylogenetically representative plant species, ranging from green algae to angiosperms, we systematically identified de novo miRNA events associated with 8,649 miRNA loci. We found that 399 (4.6%), 466 (5.4%), and 1,402 (16.2%) miRNAs were derived from inverted gene duplication events, long terminal repeats of retrotransposons, and miniature inverted-repeat transposable elements (MITEs), respectively. Among the miRNAs of these origins, MITEs, especially those belonging to the Mutator, Tc1/Mariner, and PIF/Harbinger superfamilies, were the predominant genomic source for de novo miRNAs in the 15 examined angiosperms but not in the six non-angiosperms. Our data further illustrated a transposition–transcription process by which MITEs are converted into new miRNAs (termed MITE-miRNAs) whereby properly sized MITEs are transcribed and therefore become potential substrates for the miRNA processing machinery by transposing into introns of active genes. By analyzing the 58,038 putative target genes for the 8,095 miRNAs, we found that the target genes of MITE-miRNAs were preferentially associated with response to environmental stimuli such as temperature, suggesting that MITE-miRNAs are pertinent to plant adaptation. Collectively, these findings demonstrate that molecular conversion of MITEs is a genomic mechanism leading to rapid and continuous changes to the miRNA repertoires in angiosperm.

Publisher

Oxford University Press (OUP)

Subject

Genetics,Molecular Biology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3