Scenarios for the emergence of new miRNA genes in the plantArabidopsis halleri

Author:

Pavan FlaviaORCID,Lacoste Eléanore,Castric VincentORCID,Legrand SylvainORCID

Abstract

AbstractMicroRNAs (miRNAs) are central players of the regulation of gene expression in Eukaryotes. The repertoires of miRNA genes vary drastically even among closely related species, indicating that they are evolutionarily labile. However, the processes by which they originate over the course of evolution and the nature of their progenitors across the genome remain poorly understood. Here we analyzed miRNA genes inArabidopsis halleri, a plant species where we recently documented a large number of species-specific miRNA genes, likely to represent recent events of emergence. Analysis of sequence homology across the genome indicates that a diversity of sources contributes to the emergence of new miRNA genes, including inverted duplications from protein-coding genes, rearrangements of transposable element sequences and duplications of preexisting miRNA genes. Our observations indicate that the origin from protein-coding genes was less common than was previously considered. In contrast, we estimate that almost half of the new miRNA genes likely emerged from transposable elements. Miniature inverted transposable elements (MITE) seem to be particularly important contributors to new miRNA genes, with the Harbinger and Mariner transposable element superfamilies representing disproportionate sources for their emergence. We further analyzed the recent expansion of a miRNA family derived from MuDR elements, and the duplication of miRNA genes formed by two hAT transposons. Overall, our results illustrate the rapid pace at which new regulatory elements can arise from the modification of preexisting sequences in a genome, and highlight the central role of certain categories of transposable elements in this process.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3