HaploBlocks: Efficient Detection of Positive Selection in Large Population Genomic Datasets

Author:

Kirsch-Gerweck Benedikt1,Bohnenkämper Leonard2,Henrichs Michel T2,Alanko Jarno N3,Bannai Hideo4,Cazaux Bastien5,Peterlongo Pierre6ORCID,Burger Joachim1,Stoye Jens2ORCID,Diekmann Yoan17

Affiliation:

1. Palaeogenetics Group, Institute of Organismic and Molecular Evolution (iomE), Johannes Gutenberg University , 55128 Mainz , Germany

2. Faculty of Technology and Center for Biotechnology (CeBiTec), Bielefeld University , Universitätsstr. 25, 33615 Bielefeld , Germany

3. Department of Computer Science, University of Helsinki , P.O 68, Pietari Kalmin katu 5, 00014 Helsinki , Finland

4. M&D Data Science Center, Tokyo Medical and Dental University (TMDU) , 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062 , Japan

5. CNRS, Centrale Lille, UMR 9189, Univ. Lille , CRIStAL, F-59000 Lille , France

6. GenScale, Inria/Irisa Campus de Beaulieu , 35042 Rennes Cedex , France

7. Research Department of Genetics, Evolution and Environment, University College London , London WC1E 6BT , United Kingdom

Abstract

AbstractGenomic regions under positive selection harbor variation linked for example to adaptation. Most tools for detecting positively selected variants have computational resource requirements rendering them impractical on population genomic datasets with hundreds of thousands of individuals or more. We have developed and implemented an efficient haplotype-based approach able to scan large datasets and accurately detect positive selection. We achieve this by combining a pattern matching approach based on the positional Burrows–Wheeler transform with model-based inference which only requires the evaluation of closed-form expressions. We evaluate our approach with simulations, and find it to be both sensitive and specific. The computational resource requirements quantified using UK Biobank data indicate that our implementation is scalable to population genomic datasets with millions of individuals. Our approach may serve as an algorithmic blueprint for the era of “big data” genomics: a combinatorial core coupled with statistical inference in closed form.

Publisher

Oxford University Press (OUP)

Subject

Genetics,Molecular Biology,Ecology, Evolution, Behavior and Systematics

Reference37 articles.

1. Raisd detects positive selection based on multiple signatures of a selective sweep and SNP vectors;Alachiotis;Commun Biol,2018

2. Finding all maximal perfect haplotype blocks in linear time;Alanko;Algorithms Mol Biol,2020

3. The “all of us” research program;All of Us Research Program Investigators;N Engl J Med,2019

4. Bgen: a binary file format for imputed genotype and haplotype data;Band;bioRxiv,2018

5. Probabilistic estimation of identity by descent segment endpoints and detection of recent selection;Browning;Am J Hum Genet,2020

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3