Finding all maximal perfect haplotype blocks in linear time
-
Published:2020-02-10
Issue:1
Volume:15
Page:
-
ISSN:1748-7188
-
Container-title:Algorithms for Molecular Biology
-
language:en
-
Short-container-title:Algorithms Mol Biol
Author:
Alanko Jarno, Bannai Hideo, Cazaux Bastien, Peterlongo Pierre, Stoye JensORCID
Abstract
AbstractRecent large-scale community sequencing efforts allow at an unprecedented level of detail the identification of genomic regions that show signatures of natural selection. Traditional methods for identifying such regions from individuals’ haplotype data, however, require excessive computing times and therefore are not applicable to current datasets. In 2019, Cunha et al. (Advances in bioinformatics and computational biology: 11th Brazilian symposium on bioinformatics, BSB 2018, Niterói, Brazil, October 30 - November 1, 2018, Proceedings, 2018. 10.1007/978-3-030-01722-4_3) suggested the maximal perfect haplotype block as a very simple combinatorial pattern, forming the basis of a new method to perform rapid genome-wide selection scans. The algorithm they presented for identifying these blocks, however, had a worst-case running time quadratic in the genome length. It was posed as an open problem whether an optimal, linear-time algorithm exists. In this paper we give two algorithms that achieve this time bound, one conceptually very simple one using suffix trees and a second one using the positional Burrows–Wheeler Transform, that is very efficient also in practice.
Funder
JSPS KASKENHI ANR Hydrogen
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computational Theory and Mathematics,Molecular Biology,Structural Biology
Reference15 articles.
1. Buniello A, MacArthur JAL, Cerezo M, Harris LW, Hayhurst J, Malangone C, McMahon A, Morales J, Mountjoy E, Sollis E, Suveges D, Vrousgou O, Whetzel PL, Amode R, Guillen JA, Riat HS, Trevanion SJ, Hall P, Junkins H, Flicek P, Burdett T, Hindorff LA, Cunningham F, Parkinson H. The NHGRI-EBI GWAS catalog of published genome-wide association studies, targeted arrays and summary statistics 2019. Nucl Acids Res. 2018;47(D1):1005–12. https://doi.org/10.1093/nar/gky1120. 2. Auton A, Brooks LD, Durbin RM, Garrison EP, Min Kang H, Korbel JO, Marchini JL, McCarthy S, McVean GA, Abecasis GR, 1000 Genomes Project Consortium. A global reference for human genetic variation. Nature. 2015;526(7571):68–74. https://doi.org/10.1038/nature15393. 3. Sudmant PH, Rausch T, Gardner EJ, Handsaker RE, Abyzov A, Huddleston J, Zhang Y, Ye K, Jun G, Hsi-Yang Fritz M, Konkel MK, Malhotra A, Stütz AM, Shi X, Paolo Casale F, Chen J, Hormozdiari F, Dayama G, Chen K, Malig M, Chaisson MJP, Walter K, Meiers S, Kashin S, Garrison E, Auton A, Lam HYK, Jasmine MuX, Alkan C, Antaki D, Bae T, Cerveira E, Chines P, Chong Z, Clarke L, Dal E, Ding L, Emery S, Fan X, Gujral M, Kahveci F, Kidd JM, Kong Y, Lameijer E-W, McCarthy S, Flicek P, Gibbs RA, Marth G, Mason CE, Menelaou A, Muzny DM, Nelson BJ, Noor A, Parrish NF, Pendleton M, Quitadamo A, Raeder B, Schadt EE, Romanovitch M, Schlattl A, Sebra R, Shabalin AA, Untergasser A, Walker JA, Wang M, Yu F, Zhang C, Zhang J, Zheng-Bradley X, Zhou W, Zichner T, Sebat J, Batzer MA, McCarroll SA, Mills RE, Gerstein MB, Bashir A, Stegle O, Devine SE, Lee C, Eichler EE, Korbel JO, The 1000 Genomes Project Consortium. An integrated map of structural variation in 2504 human genomes. Nature. 2015;526(7571):75–81. https://doi.org/10.1038/nature15394. 4. Gudbjartsson DF, Helgason H, Gudjonsson SA, Zink F, Oddson A, Gylfason A, Besenbacher S, Magnusson G, Halldorsson BV, Hjartarson E, Sigurdsson GT, Stacey SN, Frigge ML, Holm H, Saemundsdottir J, Helgadottir HT, Johannsdottir H, Sigfusson G, Thorgeirsson G, Sverrisson JT, Gretarsdottir S, Walters GB, Rafnar T, Thjodleifsson B, Bjornsson ES, Olafsson S, Thorarinsdottir H, Steingrimsdottir T, Gudmundsdottir TS, Theodors A, Jonasson JG, Sigurdsson A, Bjornsdottir G, Jonsson JJ, Thorarensen O, Ludvigsson P, Gudbjartsson H, Eyjolfsson GI, Sigurdardottir O, Olafsson I, Arnar DO, Magnusson OT, Kong A, Masson G, Thorsteinsdottir U, Helgason A, Sulem P, Stefansson K. Large-scale whole-genome sequencing of the Icelandic population. Nat Genet. 2015;47:435–44. https://doi.org/10.1038/ng.3247. 5. Hehir-Kwa JY, Marschall T, Kloosterman WP, Francioli LC, Baaijens JA, Dijkstra LJ, Abdellaoui A, Koval V, Thung DT, Wardenaar R, Renkens I, Coe BP, Deelen P, de Ligt J, Lameijer E-W, van Dijk F, Hormozdiari F, Consortium TGotN, Bovenberg JA, de Craen AJM, Beekman M, Hofman A, Willemsen G, Wolffenbuttel B, Platteel M, Du Y, Chen R, Cao H, Cao R, Sun Y, Cao JS, Neerincx PBT, Dijkstra M, Byelas G, Kanterakis A, Bot J, Vermaat M, Laros JFJ, den Dunnen JT, de Knijff P, Karssen LC, van Leeuwen EM, Amin N, Rivadeneira F, Estrada K, Hottenga J-J, Kattenberg VM, van Enckevort D, Mei H, Santcroos M, van Schaik BDC, Handsaker RE, McCarroll SA, Ko A, Sudmant P, Nijman IJ, Uitterlinden AG, van Duijn CM, Eichler EE, de Bakker PIW, Swertz MA, Wijmenga C, van Ommen G-JB, Slagboom PE, Boomsma DI, Schönhuth A, Ye K, Guryev V. A high-quality human reference panel reveals the complexity and distribution of genomic structural variants. Nat Commun. 2016;7:12989. https://doi.org/10.1038/ncomms12989.
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|