Morphological classification of radio galaxies with Wasserstein generative adversarial network-supported augmentation

Author:

Rustige Lennart12,Kummer Janis13ORCID,Griese Florian145ORCID,Borras Kerstin26,Brüggen Marcus3ORCID,Connor Patrick L S17,Gaede Frank2,Kasieczka Gregor7,Knopp Tobias45,Schleper Peter7

Affiliation:

1. Center for Data and Computing in Natural Sciences (CDCS) , Notkestrasse 9, D-22607 Hamburg, Germany

2. Deutsches Elektronen-Synchrotron DESY , Notkestrasse 85, D-22607 Hamburg, Germany

3. Universität Hamburg , Hamburger Sternwarte, Gojenbergsweg 112, D-21029 Hamburg, Germany

4. Section for Biomedical Imaging, University Medical Center Hamburg-Eppendorf , D-20246 Hamburg, Germany

5. Institute for Biomedical Imaging, Hamburg University of Technology , D-21073 Hamburg, Germany

6. Physics Institute III A, RWTH Aachen University , Templergraben 55, D-52062 Aachen, Germany

7. Institut für Experimentalphysik, Universität Hamburg , Luruper Chaussee 149, D-22761 Hamburg, Germany

Abstract

ABSTRACT Machine learning techniques that perform morphological classification of astronomical sources often suffer from a scarcity of labelled training data. Here, we focus on the case of supervised deep learning models for the morphological classification of radio galaxies, which is particularly topical for the forthcoming large radio surveys. We demonstrate the use of generative models, specifically Wasserstein generative adversarial networks (wGANs), to generate data for different classes of radio galaxies. Further, we study the impact of augmenting the training data with images from our wGAN on three different classification architectures. We find that this technique makes it possible to improve models for the morphological classification of radio galaxies. A simple fully connected neural network benefits most from including generated images into the training set, with a considerable improvement of its classification accuracy. In addition, we find it is more difficult to improve complex classifiers. The classification performance of a convolutional neural network can be improved slightly. However, this is not the case for a vision transformer.

Funder

Universität Hamburg

Publisher

Oxford University Press (OUP)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3