Classification of compact radio sources in the Galactic plane with supervised machine learning

Author:

Riggi S.ORCID,Umana G.,Trigilio C.,Bordiu C.,Bufano F.,Ingallinera A.,Cavallaro F.,Gordon Y.,Norris R.P.ORCID,Gürkan G.,Leto P.,Buemi C.,Loru S.,Hopkins A.M.,Filipović M.D.,Cecconello T.

Abstract

Abstract Generation of science-ready data from processed data products is one of the major challenges in next-generation radio continuum surveys with the Square Kilometre Array (SKA) and its precursors, due to the expected data volume and the need to achieve a high degree of automated processing. Source extraction, characterization, and classification are the major stages involved in this process. In this work we focus on the classification of compact radio sources in the Galactic plane using both radio and infrared images as inputs. To this aim, we produced a curated dataset of $\sim$ 20 000 images of compact sources of different astronomical classes, obtained from past radio and infrared surveys, and novel radio data from pilot surveys carried out with the Australian SKA Pathfinder. Radio spectral index information was also obtained for a subset of the data. We then trained two different classifiers on the produced dataset. The first model uses gradient-boosted decision trees and is trained on a set of pre-computed features derived from the data, which include radio-infrared colour indices and the radio spectral index. The second model is trained directly on multi-channel images, employing convolutional neural networks. Using a completely supervised procedure, we obtained a high classification accuracy (F1-score > 90%) for separating Galactic objects from the extragalactic background. Individual class discrimination performances, ranging from 60% to 75%, increased by 10% when adding far-infrared and spectral index information, with extragalactic objects, PNe and Hii regions identified with higher accuracies. The implemented tools and trained models were publicly released and made available to the radioastronomical community for future application on new radio data.

Publisher

Cambridge University Press (CUP)

Reference134 articles.

1. Abadi, M. , et al. 2016, Proceedings of the 12th USENIX Symposium on Operating Systems Designand Implementation (OSDI’16), November 2–4, 2016, Savannah, GA, USA, ISBN 978-1-931971-33-1

2. Wenger, M. , et al. 2000, A&AS, 143, 9

3. Classifying Radio Galaxies with the Convolutional Neural Network

4. Dalcin, L. , et al. 2005, JPDC, 65, 1108

5. Pandémie du coronavirus : contraintes et incertitudes

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3