Deep-learning-based radiointerferometric imaging with GAN-aided training

Author:

Geyer F.ORCID,Schmidt K.ORCID,Kummer J.,Brüggen M.ORCID,Edler H. W.ORCID,Elsässer D.ORCID,Griese F.ORCID,Poggenpohl A.,Rustige L.,Rhode W.

Abstract

Context. The incomplete coverage of the spatial Fourier space, which leads to imaging artifacts, has been troubling radio interferometry for a long time. The currently best technique is to create an image for which the visibility data are Fourier-transformed and to clean the systematic effects originating from incomplete data in Fourier space. We have shown previously how super-resolution methods based on convolutional neural networks can reconstruct sparse visibility data. Aims. The training data in our previous work were not very realistic. The aim of this work is to build a whole simulation chain for realistic radio sources that then leads to an improved neural net for the reconstruction of missing visibilities. This method offers considerable improvements in terms of speed, automatization, and reproducibility over the standard techniques. Methods. We generated large amounts of training data by creating images of radio galaxies with a generative adversarial network that was trained on radio survey data. Then, we applied the radio interferometer measurement equation in order to simulate the measurement process of a radio interferometer. Results. We show that our neural network can faithfully reconstruct images of realistic radio galaxies. The reconstructed images agree well with the original images in terms of the source area, integrated flux density, peak flux density, and the multiscale structural similarity index. Finally, we show that the neural net can be adapted for estimating the uncertainties in the imaging process.

Funder

DFG

BMBF

Profilbildung 2020

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3