Single-pixel compressive imaging via single photon counting

Author:

Li Lili1,Thomas Matthew1,Kumar Santosh1ORCID,Huang Yu-Ping1

Affiliation:

1. Stevens Institute of Technology

Abstract

Single-pixel compressive imaging reconstructs a target scene with many pixels by using a single-pixel detector to measure the power variations as small sequences of sampling patterns are applied. While it boasts remarkable capabilities, its practical applications remain a challenge in the photon-starved regime where signal-to-noise is low. To address this challenge, we propose to combine quantum parametric mode sorting (QPMS) and deep neural networks (DNN) to overcome low signal-to-noise for faithful image construction. We benchmark our approach in a telecom-LiDAR system against that using direct photon counting detection. Our results show that with only 25 sampling patterns (corresponding compression ratio ∼0.043%), QPMS plus DNN give structural similarity index measure and peak signal-to-noise ratio on average above 22 dB and 0.9, respectively, much higher than those with direct detection (DD). The details of our targets from QPMS are more clearly compared with from DD. Notably, such high performance is sustained even in the presence of 500 times stronger in-band background noise, while DD fails. The high efficiency and robust noise rejection promise potential applications in various fields, especially in photon-starving scenarios.

Funder

U.S. Army Combat Capabilities Development Command

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3