TOP: Time-to-Event Bayesian Optimal Phase II Trial Design for Cancer Immunotherapy

Author:

Lin Ruitao1ORCID,Coleman Robert L2ORCID,Yuan Ying1ORCID

Affiliation:

1. Department of Biostatistics, University of Texas MD Anderson Cancer Center, Houston, TX

2. Department of Gynecologic Oncology and Reproductive Medicine, University of Texas MD Anderson Cancer Center, Houston, TX

Abstract

Abstract Background Immunotherapies have revolutionized cancer treatment. Unlike chemotherapies, immune agents often take longer to show benefit, and the complex and unique mechanism of action of these agents renders the use of multiple endpoints more appropriate in some trials. These new features of immunotherapy make conventional phase II trial designs, which assume a single binary endpoint that is quickly ascertainable, inefficient and dysfunctional. Methods We propose a flexible and efficient time-to-event Bayesian optimal phase II (TOP) design. The TOP design is efficient in that it allows real-time “go/no-go” interim decision making in the presence of late-onset responses by using all available data and maximizes statistical power for detecting effective treatments. TOP is flexible in the number of interim looks and capable of handling simple and complicated endpoints under a unified framework. We conduct simulation studies to evaluate the operating characteristics of the TOP design. Results In the considered trial settings, compared to some existing Bayesian designs, the TOP design shortens the trial duration by 4–10 months and improves the power to detect effective treatment up to 90%, with well-controlled type I errors. Conclusions The TOP design is transparent and easy to implement, as its decision rules can be tabulated and included in the protocol prior to the conduct of the trial. The TOP design provides a flexible, efficient, and easy-to-implement method to accelerate and improve the development of immunotherapies.

Funder

National Institutes of Health

Cancer Prevention Research Institute of Texas

Ovarian Cancer Research Fund

Ann Rife Cox Chair in Gynecology

Publisher

Oxford University Press (OUP)

Subject

Cancer Research,Oncology

Reference23 articles.

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3