Using short-term endpoints to improve interim decision making and trial duration in two-stage phase II trials with nested binary endpoints

Author:

Zocholl Dario1ORCID,Kunz Cornelia U.2,Rauch Geraldine1

Affiliation:

1. Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Biometry and Clinical Epidemiology, Berlin, Germany

2. Biostatistics and Data Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach/Riss, Germany

Abstract

In oncology, phase II clinical trials are often planned as single-arm two-stage designs with a binary endpoint, for example, progression-free survival after 12 months, and the option to stop for futility after the first stage. Simon’s two-stage design is a very popular approach but depending on the follow-up time required to measure the patients’ outcomes the trial may have to be paused undesirably long. To shorten this forced interruption, it was proposed to use a short-term endpoint for the interim decision, such as progression-free survival after 3 months. We show that if the assumptions for the short-term endpoint are misspecified, the decision-making in the interim can be misleading, resulting in a great loss of statistical power. For the setting of a binary endpoint with nested measurements, such as progression-free survival, we propose two approaches that utilize all available short-term and long-term assessments of the endpoint to guide the interim decision. One approach is based on conditional power and the other is based on Bayesian posterior predictive probability of success. In extensive simulations, we show that both methods perform similarly, when appropriately calibrated, and can greatly improve power compared to the existing approach in settings with slow patient recruitment. Software code to implement the methods is made publicly available.

Publisher

SAGE Publications

Subject

Health Information Management,Statistics and Probability,Epidemiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3