Affiliation:
1. U.S. Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, 600 East Mermaid Ln, Wyndmoor, PA 19038
Abstract
Abstract
A modification that entails the use of buffering during extraction was made to further improve results for certain problematic pesticides (e.g., folpet, dichlofluanid, chlorothalonil, and pymetrozine) in a simple, fast, and inexpensive method for the determination of pesticides in produce. The method, known as the quick, easy, cheap, effective, rugged, and safe (QuEChERS) method for pesticide residues in foods, now involves the extraction of the sample with acetonitrile (MeCN) containing 1% acetic acid (HAc) and simultaneous liquid–liquid partitioning formed by adding anhydrous MgSO4 plus sodium acetate (NaAc). The extraction method is carried out by shaking a centrifuge tube which contains 1 mL of 1% HAc in MeCN plus 0.4 g anhydrous MgSO4 and 0.1 g anhydrous NaAc per g sample. The tube is then centrifuged, and a portion of the extract is transferred to a tube containing 50 mg primary secondary amine sorbent plus 150 mg anhydrous MgSO4/mL of extract. After a mixing and centrifugation step, the extract is transferred to autosampler vials for concurrent analysis by gas chromatography/mass spectrometry (GC/MS) and liquid chromatography/tandem mass spectrometry. Independent of the original sample pH, the use of buffering during the extraction yields pH <4 in the MeCN extract and >5 in the water phase, which increases recoveries of both acid- and base-sensitive pesticides. The method was evaluated for 32 diverse pesticides in different matrixes, and typical percent recoveries were 95 ± 10, even for some problematic pesticides. Optional solvent exchange to toluene prior to GC/MS analysis was also evaluated, showing equally good results with the benefit of lower detection limits, but at the cost of more time, material, labor, and expense.
Publisher
Oxford University Press (OUP)
Subject
Pharmacology,Agronomy and Crop Science,Environmental Chemistry,Food Science,Analytical Chemistry
Cited by
481 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献