Integrated Omic Analyses Identify Pathways and Transcriptomic Regulators Associated with Chemical Alterations of in Vitro Neural Network Formation

Author:

Marable Carmen A12,Frank Christopher L1,Seim Roland F34,Hester Susan1,Henderson W Matthew4,Chorley Brian1,Shafer Timothy J1

Affiliation:

1. Rapid Assay Development Branch, Biomolecular and Computational Toxicology Division, Center for Computational Toxicology and Exposure, US Environmental Protection Agency, Research Triangle Park, NC, 27711

2. Grantee to the U.S. EPA via Oak Ridge Institute for Science and Education, Research Triangle Park, NC, 27711

3. Grantee to the U.S. EPA via Oak Ridge Institute for Science and Education, Athens, GA

4. Chemical Processes and Systems Branch, Seim, Center for Environmental Measurement and Modeling, US Environmental Protection Agency, Athens, GA, 30605

Abstract

Abstract Development of in vitro new approach methodologies (NAMs) has been driven by the need for developmental neurotoxicity (DNT) hazard data on thousands of chemicals. The network formation assay (NFA) characterizes DNT hazard based on changes in network formation but provides no mechanistic information. This study investigated nervous system signaling pathways and upstream physiological regulators underlying chemically-induced neural network dysfunction. Rat primary cortical neural networks grown on microelectrode arrays were exposed for 12 days in vitro (DIV) to cytosine arabinoside (CA), 5 fluorouracil (5FU), domoic acid (DA), cypermethrin (CM), deltamethrin (DM), or haloperidol (HP) as these exposures altered network formation in previous studies. RNA-seq from cells and GC/MS analysis of media extracts collected on DIV 12 provided gene expression and metabolomic identification, respectively. The integration of differentially expressed genes and metabolites for each neurotoxicant was analyzed using Ingenuity Pathway Analysis (IPA). All six compounds altered gene expression that linked to developmental disorders and neurological diseases. Other enriched canonical pathways overlapped among compounds of the same class; for example, genes and metabolites altered by both CA and 5FU exposures are enriched in axonal guidance pathways. Integrated analysis of upstream regulators was heterogeneous across compounds, but identified several transcriptomic regulators including CREB1, SOX2, NOTCH1, and PRODH. These results demonstrate that changes in network formation are accompanied by transcriptomic and metabolomic changes and that different classes of compounds produce differing responses. This approach can enhance information obtained from NAMs and contribute to the identification and development of adverse outcome pathways (AOPs) associated with DNT.

Publisher

Oxford University Press (OUP)

Subject

Toxicology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3