A developmental neurotoxicity adverse outcome pathway (DNT‐AOP) with voltage gate sodium channel (VGSC) inhibition as a molecular initiating event (MiE)

Author:

,Crofton Kevin M.,Paparella Martin,Price Anna,Mangas Iris,Martino Laura,Terron Andrea,Hernández‐Jerez Antonio

Abstract

Abstract The adverse outcome pathway (AOP) framework serves as a practical tool for organising scientific knowledge that can be used to infer cause–effect relationships between stressor events and toxicity outcomes in intact organisms. However, a major challenge in the broader application of the AOP concept within regulatory toxicology is the development of a robust AOPs that can withstand peer review and acceptance. This is mainly due to the considerable amount of work required to substantiate the modular units of a complete AOP, which can take years from inception to completion. The methodology used here consisted of an initial assessment of a single chemical hazard using the Integrated Approach to Testing and Assessment (IATA) framework. An evidence‐based approach was then used to gather empirical evidence combining systematic literature review methods with expert knowledge to ensure the effectiveness of the AOP development methodology. The structured framework used assured transparency, objectivity and comprehensiveness, and included expert knowledge elicitation for the evaluation of key event relationships (KERs). This stepwise approach led to the development of an AOP that begins with binding of chemicals to Voltage Gate Sodium Channels (VGSC/Nav) during mammalian development leading to adverse consequences in neurodevelopment evidenced as deficits in cognitive functions. Disruption of the formation of precise neural circuits by alterations in VGSC kinetics during the perinatal stages of brain development may also underlie neurodevelopmental disorders. Gaps in our understanding include the specific critical developmental windows and the quantitative relationship of binding to VGSC and subsequent disruption and cognitive function. Despite the limited quantitative information at all KER levels, regulatory applications of this AOP for DNT assessment have been identified.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3