Function and transcriptional regulation of CsKCS20 in the elongation of very-long-chain fatty acids and wax biosynthesis in Citrus sinensis flavedo

Author:

Wang Yang12,Yang Xianpeng3,Chen Zhaoxing4,Zhang Jin12,Si Kai12,Xu Rangwei12,He Yizhong12,Zhu Feng12,Cheng Yunjiang12

Affiliation:

1. Huazhong Agricultural University Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, , Wuhan 430070, China

2. Huazhong Agricultural University National R&D Center for Citrus Postharvest Technology, College of Horticulture and Forestry Sciences, , Wuhan 430070, China

3. Shandong Normal University College of Life Sciences, , Jinan 250014, China

4. Institute of Citrus Science Research of Ganzhou , Ganzhou 341000, China

Abstract

Abstract Cuticular wax on plant aerial surfaces plays a vital role in the defense against various stresses, and the genes related to wax metabolism have been well documented in several model plants. However, there is very limited research on the key enzymes and transcription factors (TFs) associated with carbon chain distribution and wax biosynthesis in citrus fruit. In this study, an analysis of wax metabolites indicated that even carbon-chain (C24-C28) metabolites are the dominant wax components in citrus fruit, and a 3-ketoacyl-CoA synthase (KCS) family gene (CsKCS20) plays an important role in the carbon chain distribution during wax biosynthesis in a wax-deficient mutant (MT). Expression of CsKCS20 in yeast indicated that CsKCS20 can catalyze the biosynthesis of C22 and C24 very-long-chain fatty acids (VLCFAs). In addition, transcriptome and sequence analysis indicated that the differential expression of CsKCS20 between the wild-type (WT) and MT fruit can be partly attributed to the regulation of CsMYB96, which was further confirmed by yeast one-hybrid (Y1H) assays, electrophoretic mobility shift assays (EMSAs) and dual luciferase assays. The functions of CsMYB96 and CsKCS20 in wax biosynthesis were further validated by heterologous expression in Arabidopsis. In summary, this study elucidates the important roles of CsKCS20 and CsMYB96 in regulating VLCFA elongation and cuticular wax biosynthesis, which provides new directions for the improvement of citrus fruit wax quality in genetic breeding programs.

Publisher

Oxford University Press (OUP)

Subject

Horticulture,Plant Science,Genetics,Biochemistry,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3