Transgenerational plasticity in salinity tolerance of rice: unraveling non-genetic phenotypic modifications and environmental influences

Author:

Aycan Murat1ORCID,Nahar Lutfun23ORCID,Baslam Marouane1456ORCID,Mitsui Toshiaki1ORCID

Affiliation:

1. Laboratory of Biochemistry, Faculty of Agriculture, Niigata University , Niigata 950-2181 , Japan

2. Department of Life and Food Sciences, Graduate School of Science and Technology, Niigata University , Niigata 950-2181 , Japan

3. Department of Agricultural Botany, Sher-e-Bangla Agricultural University , Dhaka 1207 , Bangladesh

4. GrowSmart , Seoul 03129 , Republic of Korea

5. Centre d’Agrobiotechnologie et Bioingénierie, Unité de Recherche labellisée CNRST (Centre AgroBio-tech-URL-CNRST-05), Université Cadi Ayyad , Marrakech, 40000 , Morocco

6. Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Department of Biology, Faculty of Science Semlalia, Université Cadi Ayyad , Marrakech, 40000 , Morocco

Abstract

Abstract Transgenerational plasticity in plants enables rapid adaptation to environmental changes, allowing organisms and their offspring to adapt to the environment without altering their underlying DNA. In this study, we investigated the transgenerational plasticity in salinity tolerance of rice plants using a reciprocal transplant experimental strategy. Our aim was to assess whether non-genetic environment-induced phenotypic modifications and transgenerational salinity affect the salinity tolerance of progeny while excluding nuclear genomic factors for two generations. Using salt-tolerant and salt-sensitive rice genotypes, we observed that the parentally salt-stressed salt-sensitive genotype displayed greater growth performance, photosynthetic activity, yield performance, and transcriptional responses than the parentally non-stressed salt-sensitive plants under salt stress conditions. Surprisingly, salt stress-exposed salt-tolerant progeny did not exhibit as much salinity tolerance as salt stress-exposed salt-sensitive progeny under salt stress. Our findings indicate that the phenotypes of offspring plants differed based on the environment experienced by their ancestors, resulting in heritable transgenerational phenotypic modifications in salt-sensitive genotypes via maternal effects. These results elucidated the mechanisms underlying transgenerational plasticity in salinity tolerance, providing valuable insights into how plants respond to changing environmental conditions.

Funder

Ministry of Education, Culture, Science, and Technology

Grant-in-Aid for Scientific Research

Publisher

Oxford University Press (OUP)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3