Origins and demographics of wandering black holes

Author:

Ricarte Angelo12,Tremmel Michael3ORCID,Natarajan Priyamvada34ORCID,Zimmer Charlotte5,Quinn Thomas6

Affiliation:

1. Center for Astrophysics | Harvard & Smithsonian, 60 Garden Street, Cambridge, MA 02138, USA

2. Black Hole Initiative at Harvard University, 20 Garden Street, Cambridge, MA 02138, USA

3. Department of Astronomy, Yale University, 52 Hillhouse Avenue, New Haven, CT 06511, USA

4. Department of Physics, Yale University, P.O. Box 208121, New Haven, CT 06520, USA

5. Department of Economics, Yale University, P.O. Box 208268, New Haven, CT 06520, USA

6. Department of Astronomy, University of Washington, PO Box 351580, Seattle, WA 98195, USA

Abstract

ABSTRACT We characterize the population of wandering black holes, defined as those physically offset from their halo centres, in the romulus cosmological simulations. Unlike most other currently available cosmological simulations, black holes are seeded based on local gas properties and are permitted to evolve dynamically without being fixed at halo centres. Tracking these black holes allows us to make robust predictions about the offset population. We find that the number of wandering black holes scales roughly linearly with the halo mass, such that we expect thousands of wandering black holes in galaxy cluster haloes. Locally, these wanderers account for around 10 per cent of the local black hole mass budget once seed masses are accounted for. Yet for higher redshifts ($z$ ≳ 4), wandering black holes both outweigh and outshine their central supermassive counterparts. Most wandering black holes, we find, remain close to the seed mass and originate from the centres of previously disrupted satellite galaxies. While most do not retain a resolved stellar counterpart, those that do are situated farther out at larger fractions of the virial radius. Wanderers with higher luminosities are preferentially at lower radius, more massive, and either closer to their host’s mid-planes or associated with a stellar overdensity. This analysis shows that our current census of supermassive black holes is incomplete and that a substantial population of off-centre wanderers likely exists.

Funder

National Science Foundation

BHI

Gordon and Betty Moore Foundation

John Templeton Foundation

NSF

NASA

NAS

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3