Imprints of supermassive black hole evolution on the spectral and spatial anisotropy of nano-hertz stochastic gravitational-wave background

Author:

Sah Mohit Raj1ORCID,Mukherjee Suvodip1ORCID,Saeedzadeh Vida2ORCID,Babul Arif23,Tremmel Michael4ORCID,Quinn Thomas R5

Affiliation:

1. Department of Astronomy and Astrophysics, Tata Institute of Fundamental Research , Mumbai 400005 , India

2. Department of Physics and Astronomy, University of Victoria , 3800 Finnerty Road, Victoria, BC, V8P 1A1 , Canada

3. Infosys Visiting Chair Professor, Indian Institute of Science , Bangalore 560012 , India

4. School of Physics, University College Cork , College Road, Cork T12 K8AF , Ireland

5. Astronomy Department, University of Washington , Box 351580, Seattle, WA 98195-1580 , USA

Abstract

ABSTRACT The formation and evolution of supermassive black holes (SMBHs) remains an open question in the field of modern cosmology. The detection of nanohertz (n-Hz) gravitational waves via pulsar timing arrays (PTAs) in the form of individual events and the stochastic gravitational wave background (SGWB) offers a promising avenue for studying SMBH evolution across cosmic time, with SGWB signal being the immediately detectable signal with the currently accessible telescope sensitivities. By connecting the galaxy properties in the large scale (Gpc scale) cosmological simulation such as MICECAT with the small scale ($\sim$Mpc scale) galaxy simulations from ROMULUS, we show that different scenarios of galaxy–SMBH evolution with redshift leads to a frequency-dependent spatial anisotropy in the SGWB signal. The presence of slow evolution of the SMBHs in the Universe leads to a pronounced blue anisotropic spectrum of the SGWB. In contrast, if SMBHs grow faster in the Universe in lighter galaxies, the frequency-dependent spatial anisotropy exhibits a more flattened anisotropic spectrum. This additional aspect of the SGWB signal on top of the monopole SGWB signal, can give insight on how the SMBHs form in the high-redshift Universe and its interplay with the galaxy formation from future measurements.

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3