Toward Cosmological Simulations of the Magnetized Intracluster Medium with Resolved Coulomb Collision Scale

Author:

Steinwandel Ulrich P.ORCID,Dolag Klaus,Böss Ludwig M.ORCID,Marin-Gilabert Tirso

Abstract

Abstract We present the first results of one extremely high-resolution, nonradiative magnetohydrodynamical cosmological zoom-in simulation of a massive cluster with a virial mass of M vir = 2.0 × 1015 solar masses. We adopt a mass resolution of 4 × 105 M with a maximum spatial resolution of around 250 pc in the central regions of the cluster. We follow the detailed amplification process in a resolved small-scale turbulent dynamo in the intracluster medium (ICM) with strong exponential growth until redshift 4, after which the field grows weakly in the adiabatic compression limit until redshift 2. The energy in the field is slightly reduced as the system approaches redshift zero in agreement with adiabatic decompression. The field structure is highly turbulent in the center and shows field reversals on a length scale of a few tens of kiloparsecs and an anticorrelation between the radial and angular field components in the central region that is ordered by small-scale turbulent dynamo action. The large-scale field on megaparsec scales is almost isotropic, indicating that the structure formation process in massive galaxy cluster formation suppresses any memory of both the initial field configuration and the amplified morphology via the turbulent dynamo. We demonstrate that extremely high-resolution simulations of the magnetized ICM are within reach that can simultaneously resolve the small-scale magnetic field structure, which is of major importance for the injection of and transport of cosmic rays in the ICM. This work is a major cornerstone for follow-up studies with an on-the-fly treatment of cosmic rays to model in detail electron-synchrotron and gamma-ray emissions.

Publisher

American Astronomical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3