First- and second-generation black hole and neutron star mergers in 2+2 quadruples: population statistics

Author:

Hamers Adrian S1ORCID,Fragione Giacomo23ORCID,Neunteufel Patrick1,Kocsis Bence4ORCID

Affiliation:

1. Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str 1, D-85741 Garching, Germany

2. Center for Interdisciplinary Exploration & Research in Astrophysics (CIERA), Evanston, IL 60202, USA

3. Department of Physics & Astronomy, Northwestern University, Evanston, IL 60202, USA

4. Rudolf Peierls Centre for Theoretical Physics, Clarendon Laboratory, Parks Road, Oxford OX1 3PU, UK

Abstract

ABSTRACT Recent detections of gravitational waves from mergers of neutron stars (NSs) and black holes (BHs) in the low- and high-end mass gap regimes pose a puzzle to standard stellar and binary evolution theory. Mass-gap mergers may originate from successive mergers in hierarchical systems such as quadruples. Here, we consider repeated mergers of NSs and BHs in stellar 2+2 quadruple systems, in which secular evolution can accelerate the merger of one of the inner binaries. Subsequently, the merger remnant may interact with the companion binary, yielding a second-generation merger. We model the initial stellar and binary evolution of the inner binaries as isolated systems. In the case of successful compact object formation, we subsequently follow the secular dynamical evolution of the quadruple system. When a merger occurs, we take into account merger recoil, and model subsequent evolution using direct N-body integration. With different assumptions on the initial properties, we find that the majority of first-generation mergers are not much affected by secular evolution, with their observational properties mostly consistent with isolated binaries. A small subset shows imprints of secular evolution through residual eccentricity in the LIGO band, and retrograde spin-orbit orientations. Second-generation mergers are ∼107 times less common than first-generation mergers, and can be strongly affected by scattering (i.e. three-body interactions) induced by the first-generation merger. In particular, scattering can account for mergers within the low-end mass gap, although not the high-end mass gap. Also, in a few cases, scattering could explain highly eccentric LIGO sources and negative effective spin parameters.

Funder

Horizon 2020

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3