Quadruple-star systems are not always nested triples: a machine learning approach to dynamical stability

Author:

Vynatheya Pavan1ORCID,Mardling Rosemary A2,Hamers Adrian S1ORCID

Affiliation:

1. Max-Planck-Institut für Astrophysik , Karl-Schwarzschild-Straße 1, D-85748 Garching bei München , Germany

2. School of Physics and Astronomy, Monash University , Clayton Victoria 3800 , Australia

Abstract

ABSTRACT The dynamical stability of quadruple-star systems has traditionally been treated as a problem involving two ‘nested’ triples which constitute a quadruple. In this novel study, we employed a machine learning algorithm, the multilayer perceptron (MLP), to directly classify 2 + 2 and 3 + 1 quadruples based on their stability (or long-term boundedness). The training data sets for the classification, comprised of 5 × 105 quadruples each, were integrated using the highly accurate direct N-body code mstar. We also carried out a limited parameter space study of zero-inclination systems to directly compare quadruples to triples. We found that both our quadruple MLP models perform better than a ‘nested’ triple MLP approach, which is especially significant for 3 + 1 quadruples. The classification accuracies for the 2 + 2 MLP and 3 + 1 MLP models are 94 and 93 per cent, respectively, while the scores for the ‘nested’ triple approach are 88 and 66 per cent, respectively. This is a crucial implication for quadruple population synthesis studies. Our MLP models, which are very simple and almost instantaneous to implement, are available on Github, along with python3 scripts to access them.

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3