Comprehensive analysis of the transient X-ray pulsar MAXI J1409−619

Author:

Dönmez Ç K1,Serim M M12,İnam S Ç3ORCID,Şahiner Ş4,Serim D1,Baykal A1

Affiliation:

1. Physics Department, Middle East Technical University, 06800 Ankara, Turkey

2. TÜBİTAK ULAKBİM, 06510 Ankara, Turkey

3. Department of Electrical and Electronics Engineering, Başkent University, 06790 Ankara, Turkey

4. Department of Electronics and Communication Engineering, Beykent University, 34398 İstanbul, Turkey

Abstract

ABSTRACT We probe the properties of the transient X-ray pulsar MAXI J1409−619 through RXTE and Swift follow-up observations of the outburst in 2010. We are able to phase-connect the pulse arrival times for the 25 d episode during the outburst. We suggest that either an orbital model (with Porb ≃ 14.7(4) d) or a noise process due to random torque fluctuations (with Sr ≈ 1.3 × 10−18 Hz2 s−2 Hz−1) is plausible to describe the residuals of the timing solution. The frequency derivatives indicate a positive torque–luminosity correlation, which implies temporary accretion disc formation during the outburst. We also discover several quasi-periodic oscillations in company with their harmonics whose centroid frequencies decrease as the source flux decays. The variation of the pulsed fraction and spectral power-law index of the source with X-ray flux is interpreted as the sign of transition from a critical to a sub-critical accretion regime at the critical luminosity within the range of 6 × 1037–1.2 × 1038 erg s−1. Using pulse-phase-resolved spectroscopy, we show that the phases with higher flux tend to have lower photon indices, indicating that the polar regions produce spectrally harder emission.

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3