Monte Carlo Simulations on Possible Collimation Effects of Outflows to Fan Beam Emission of Ultraluminous Accreting X-Ray Pulsars

Author:

Hou X.ORCID,You Y.ORCID,Ji L.ORCID,Soria R.ORCID,Zhang S. N.ORCID,Ge M. Y.ORCID,Tao L.ORCID,Zhang S.,Feng H.ORCID,Zhou M.,Tuo Y. L.ORCID,Song L. M.ORCID,Wang J. C.

Abstract

Abstract Pulsating ultraluminous X-ray sources (PULXs) are accreting pulsars with apparent X-ray luminosity exceeding 1039 erg s−1. We perform Monte Carlo simulations to investigate whether a high collimation effect (or strong beaming effect) is dominant in the presence of accretion outflows, for the fan beam emission of the accretion column of the neutron stars in PULXs. We show that the three nearby PULXs (RX J0209.6−7427, Swift J0243.6+6124, and SMC X-3), namely, the Three Musketeers here, have their main pulsed emission not strongly collimated even if strong outflows exist. This conclusion can be extended to the current sample of extragalactic PULXs, if accretion outflows are commonly produced from them. This means that the observed high luminosity of PULXs is indeed intrinsic, which can be used to infer the existence of very strong surface magnetic fields of ∼1013–14 G, possibly multipole fields. However, if strong outflows are launched from the accretion disks in PULXs as a consequence of disk spherization by radiation pressure, regular dipole magnetic fields of ∼1012 G may be required, comparable to that of the Three Musketeers, which have experienced large luminosity changes from well below their Eddington limit (2 × 1038 erg s−1 for an NS) to super-Eddington and whose maximum luminosity fills the luminosity gap between Galactic pulsars and extragalactic PULXs.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3