A catalogue of high-mass X-ray binaries in the Galaxy: from the INTEGRAL to the Gaia era

Author:

Fortin FrancisORCID,García FedericoORCID,Simaz Bunzel AdolfoORCID,Chaty SylvainORCID

Abstract

Context. High-mass X-ray binaries (HMXBs) are a particular class of high-energy sources that require multi-wavelength observational efforts to be properly characterised. New identifications and the refinement of previous measurements are regularly published in the literature by independent teams of researchers and might, when they are collected in a catalogue, offer a tool for facilitating further studies of HMXBs. Aims. We update previous instances of HMXB catalogues in the Galaxy and provide the community easy access to the most complete set of observables on Galactic HMXBs. In addition to the fixed version that is available in Vizier, we also aim to host and maintain a dynamic version that can be updated upon request from users. Any modification will be logged in this version. Methods. Using previous HMXB catalogues supplemented by listings of hard X-ray sources detected in the past 20 yr, we produced a base set of HMXBs and candidates by means of identifier and sky coordinate cross matches. We queried in Simbad for unreferenced HMXBs. We searched for as many hard X-ray, soft X-ray, optical, and infrared counterparts to the HMXBs as we could in well-known catalogues and compiled their coordinates. Each HMXB was subjected to a meticulous search in the literature to find relevant measurements and the original reference. Results. We provide a catalogue of 152 HMXBs in the Galaxy with their best known coordinates, the spectral type of the companion star, systemic radial velocities, component masses, orbital period, eccentricity, and spin period when available. We also provide the coordinates and identifiers for each counterpart we found from hard X-rays to the near-infrared, including 111 counterparts from the recent Gaia DR3 catalogue.

Funder

APC

IPGP

CNES

CONICET

ANPCyT

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3