A simulation-based inference pipeline for cosmic shear with the Kilo-Degree Survey

Author:

Lin Kiyam1ORCID,von wietersheim-Kramsta Maximilian1,Joachimi Benjamin1,Feeney Stephen1ORCID

Affiliation:

1. Department of Physics and Astronomy, University College London , Gower Street, London, WC1E 6BT, UK

Abstract

ABSTRACT The standard approach to inference from cosmic large-scale structure data employs summary statistics that are compared to analytic models in a Gaussian likelihood with pre-computed covariance. To overcome the idealizing assumptions about the form of the likelihood and the complexity of the data inherent to the standard approach, we investigate simulation-based inference (SBI), which learns the likelihood as a probability density parameterized by a neural network. We construct suites of simulated summary statistics, exactly Gaussian distributed for validation purposes, for the most recent Kilo-Degree Survey (KiDS) weak gravitational lensing analysis and demonstrate that SBI recovers the full 12-dimensional KiDS posterior distribution with just under 104 simulations. We optimize the simulation strategy by initially covering the parameter space by a hypercube, followed by batches of actively learnt additional points. The data compression in our SBI implementation is robust to suboptimal choices of fiducial parameter values and of data covariance. Together with a fast simulator, SBI is therefore a competitive and more versatile alternative to standard inference.

Funder

STFC

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3