Nuisance hardened data compression for fast likelihood-free inference

Author:

Alsing Justin123ORCID,Wandelt Benjamin24

Affiliation:

1. Oskar Klein Centre for Cosmoparticle Physics, Stockholm University, Stockholm SE-106 91, Sweden

2. Center for Computational Astrophysics, Flatiron Institute, 162 5th Ave, New York City, NY 10010, USA

3. Imperial Centre for Inference and Cosmology, Department of Physics, Imperial College London, Blackett Laboratory, Prince Consort Road, London SW7 2AZ, UK

4. Sorbonne Université, Institut Lagrange de Paris (ILP), 98 bis boulevard Arago, F-75014 Paris, France

Abstract

ABSTRACT We show how nuisance parameter marginalized posteriors can be inferred directly from simulations in a likelihood-free setting, without having to jointly infer the higher dimensional interesting and nuisance parameter posterior first and marginalize a posteriori. The result is that for an inference task with a given number of interesting parameters, the number of simulations required to perform likelihood-free inference can be kept (roughly) the same irrespective of the number of additional nuisances to be marginalized over. To achieve this, we introduce two extensions to the standard likelihood-free inference set-up. First, we show how nuisance parameters can be recast as latent variables and hence automatically marginalized over in the likelihood-free framework. Secondly, we derive an asymptotically optimal compression from N data to n summaries – one per interesting parameter - such that the Fisher information is (asymptotically) preserved, but the summaries are insensitive to the nuisance parameters. This means that the nuisance marginalized inference task involves learning n interesting parameters from n ‘nuisance hardened’ data summaries, regardless of the presence or number of additional nuisance parameters to be marginalized over. We validate our approach on two examples from cosmology: supernovae and weak-lensing data analyses with nuisance parametrized systematics. For the supernova problem, high-fidelity posterior inference of Ωm and w0 (marginalized over systematics) can be obtained from just a few hundred data simulations. For the weak-lensing problem, six cosmological parameters can be inferred from just $\mathcal {O}(10^3)$ simulations, irrespective of whether 10 additional nuisance parameters are included in the problem or not.

Funder

Simons Foundation

Swedish Research Council

Agence Nationale de la Recherche

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 65 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. pop-cosmos: A Comprehensive Picture of the Galaxy Population from COSMOS Data;The Astrophysical Journal Supplement Series;2024-09-01

2. Neutrino Mass Constraint from an Implicit Likelihood Analysis of BOSS Voids;The Astrophysical Journal;2024-07-01

3. EFTofLSS meets simulation-based inference: σ 8 from biased tracers;Journal of Cosmology and Astroparticle Physics;2024-05-01

4. Scalable inference with autoregressive neural ratio estimation;Monthly Notices of the Royal Astronomical Society;2024-04-27

5. SIDE-real: Supernova Ia Dust Extinction with truncated marginal neural ratio estimation applied to real data;Monthly Notices of the Royal Astronomical Society;2024-04-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3