SIDE-real: Supernova Ia Dust Extinction with truncated marginal neural ratio estimation applied to real data

Author:

Karchev Konstantin1ORCID,Grayling Matthew2ORCID,Boyd Benjamin M2,Trotta Roberto1345ORCID,Mandel Kaisey S26ORCID,Weniger Christoph7

Affiliation:

1. Theoretical and Scientific Data Science, Scuola Internazionale Superiore di Studi Avanzati (SISSA) , Via Bonomea 265, I-34136 Trieste , Italy

2. Institute of Astronomy and Kavli Institute for Cosmology , Madingley Road, Cambridge CB3 0HA , United Kingdom

3. Astrophysics Group, Physics Department, Blackett Lab, Imperial College London , Prince Consort Road, London SW7 2AZ , United Kingdom

4. INFN – National Institute for Nuclear Physics , Via Valerio 2, I-34127 Trieste , Italy

5. Italian Research Center on High-Performance Computing, Big Data and Quantum Computing , Via Magnanelli 2, I-40033 Casalecchio di Reno (BO) , Italy

6. Statistical Laboratory, DPMMS, University of Cambridge , Wilberforce Road, Cambridge CB3 0WB , UK

7. Gravitational and Astroparticle Physics Amsterdam (GRAPPA), University of Amsterdam , Science Park 904, NL-1098 XH Amsterdam , the Netherlands

Abstract

ABSTRACT We present the first fully simulation-based hierarchical analysis of the light curves of a population of low-redshift type Ia supernovæ (SNæ Ia). Our hardware-accelerated forward model, released in the Python package slicsim, includes stochastic variations of each SN’s spectral flux distribution (based on the pre-trained BayeSN model), extinction from dust in the host and in the Milky Way, redshift, and realistic instrumental noise. By utilizing truncated marginal neural ratio estimation (TMNRE), a neural network-enabled simulation-based inference technique, we implicitly marginalize over 4000 latent variables (for a set of ≈100 SNæ Ia) to efficiently infer SN Ia absolute magnitudes and host-galaxy dust properties at the population level while also constraining the parameters of individual objects. Amortization of the inference procedure allows us to obtain coverage guarantees for our results through Bayesian validation and frequentist calibration. Furthermore, we show a detailed comparison to full likelihood-based inference, implemented through Hamiltonian Monte Carlo, on simulated data and then apply TMNRE to the light curves of 86 SNæ Ia from the Carnegie Supernova Project, deriving marginal posteriors in excellent agreement with previous work. Given its ability to accommodate arbitrarily complex extensions to the forward model, e.g. different populations based on host properties, redshift evolution, complicated photometric redshift estimates, selection effects, and non-Ia contamination, without significant modifications to the inference procedure, TMNRE has the potential to become the tool of choice for cosmological parameter inference from future, large SN Ia samples.

Funder

ERC

Science and Technology Facilities Council

Engineering and Physical Sciences Research Council

Publisher

Oxford University Press (OUP)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3