Modeling Balmer line signatures of stellar CMEs

Author:

Leitzinger M1,Odert P1,Heinzel P23

Affiliation:

1. Institute of Physics/IGAM, University of Graz, Universitätsplatz 5, 8010 Graz, Austria

2. Astronomical Institute, The Czech Academy of Sciences, 25165 Ondřejov, Czech Republic

3. University of Wrocław, Center of Scientific Excellence – Solar and Stellar Activity, Kopernika 11, 51-622 Wrocław, Poland

Abstract

Abstract From the Sun we know that coronal mass ejections (CMEs) are a transient phenomenon, often correlated with flares. They have an impact on solar mass- and angular momentum loss, and therefore solar evolution, and make a significant part of space weather. The same is true for stars, but stellar CMEs are still not well constrained, although new methodologies have been established, and new detections presented in the recent past. So far, probable detections of stellar CMEs have been presented, but their physical parameters which are not directly accessible from observations, such as electron density, optical thickness, temperature, etc., have been so far not determined for the majority of known events. We apply cloud modeling, as commonly used on the Sun, to a known event from the literature, detected on the young dMe star V374 Peg. This event manifests itself in extra emission on the blue side of the Balmer lines. By determining the line source function from 1D NLTE modeling together with the cloud model formulation we present distributions of physical parameters of this event. We find that except for temperature and area all parameters are at the upper range of typical solar prominence parameters. The temperature and the area of the event were found to be higher than for typical solar prominences observed in Balmer lines. We find more solutions for the filament than for the prominence geometry. Moreover we show that filaments can appear in emission on dMe stars contrary to the solar case.

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3