Heating and cooling in stellar coronae: coronal rain on a young Sun

Author:

Daley-Yates Simon1ORCID,Jardine Moira M1ORCID,Johnston Craig D23ORCID

Affiliation:

1. School of Physics and Astronomy, University of St Andrews , North Haugh, St Andrews, Fife KY16 YSS , UK

2. Department of Physics and Astronomy, George Mason University , Fairfax, VA 22030 , USA

3. Heliophysics Science Division, NASA Goddard Space Flight Center , Greenbelt, MD 20771 , USA

Abstract

ABSTRACT Recent observations of rapidly rotating cool dwarfs have revealed H α line asymmetries indicative of clumps of cool, dense plasma in the stars’ coronae. These clumps may be either long-lived (persisting for more than one stellar rotation) or dynamic. The fastest dynamic features show velocities greater than the escape speed, suggesting that they may be centrifugally ejected from the star, contributing to the stellar angular momentum loss. Many, however, show lower velocities, similar to coronal rain observed on the Sun. We present 2.5D magnetohydrodynamic simulations of the formation and dynamics of these condensations in a rapidly rotating (Prot = 1 d) young Sun. Formation is triggered by excess surface heating. This pushes the system out of thermal equilibrium and triggers a thermal instability. The resulting condensations fall back towards the surface. They exhibit quasi-periodic behaviour, with periods longer than typical periods for solar coronal rain. We find line-of-sight velocities for these clumps in the range of 50 km s−1 (blueshifted) to 250 km s−1 (redshifted). These are typical of those inferred from stellar H α line asymmetries, but the inferred clump masses of 3.6 × 1014 g are significantly smaller. We find that a maximum of ${\simeq}3~{{ \rm per\ cent}}$ of the coronal mass is cool clumps. We conclude that coronal rain may be common in solar-like stars, but may appear on much larger scales in rapid rotators.

Funder

STFC

International Space Science Institute

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3