Thermal instability and non-equilibrium in solar coronal loops: from coronal rain to long-period intensity pulsations

Author:

Antolin PORCID

Abstract

Abstract The complex interaction of the magnetic field with matter is the key to some of the most puzzling observed phenomena at multiple scales across the Universe, from tokamak plasma confinement experiments in the laboratory to the filamentary structure of the interstellar medium. A major astrophysical puzzle is the phenomenon of coronal heating, upon which the most external layer of the solar atmosphere, the corona, is sustained at multi-million degree temperatures on average. However, the corona also conceals a cooling problem. Indeed, recent observations indicate that, even more mysteriously, like snowflakes in the oven, the corona hosts large amounts of cool material termed coronal rain, hundreds of times colder and denser, that constitute the seed of the famous prominences. Numerical simulations have shown that this cold material does not stem from the inefficiency of coronal heating mechanisms, but results from the specific spatio-temporal properties of these. As such, a large fraction of coronal loops, the basic constituents of the solar corona, are suspected to be in a state of thermal non-equilibrium (TNE), characterised by heating (evaporation) and cooling (condensation) cycles whose telltale observational signatures are long-period intensity pulsations in hot lines and thermal instability-driven coronal rain in cool lines, both now ubiquitously observed. In this paper, we review this yet largely unexplored strong connection between the observed properties of hot and cool material in TNE and instability and the underlying coronal heating mechanisms. Focus is set on the long-observed coronal rain, for which significant research already exists, contrary to the recently discovered long-period intensity pulsations. We further identify the outstanding open questions in what constitutes a new, rapidly growing field of solar physics.

Funder

Northumbria University

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Nuclear Energy and Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3